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Markov's inequality asserts that

max Ip'(x)1 ~ n2 max Ip(x)1
-l~x~l -l~x~l

for every polynomial of degree at most n. The magnitude of

(1)

(2)

was examined by several authors for certain subclasses S of II". In this paper we
introduce S"" S'::(r) (0 ~ m ~ n, 0 < r ~ 1), the set of those polynomials from II"
which have all but at most m zeros outside the circle with center 0 and radius r,
and establish the exact order of the above expression up to a multiplicative
constant depending only on m. © 1990 Academic Press, Inc.

1. INTRODUCTION, NOTATIONS

Denote the set of all real algebraic polynomials of degree at most n by
IIn' Let P':: (r) (0 ~ m ~ n, r > 0) be the set of those polynomials from IIn

which have only real zeros, at most m of which are in (-r, r). In 1940
P. Erdos [5] proved that

Ip(x)1 (3)

for every polynomial from P~(1). Let K(r) = {ZEC: Izi <r} and denote by
S:(r) (O~m~n, O<r~ 1) the set of those polynomials from lIn which
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have all but at most m zeros outside K(r). In 1963 G. G. Lorentz [6]
defined the class

Pn(a, b) = {P: p(x) = .I aj(x - a)j (b - xt- j with all aj ;?; o}
1=1

and proved that

max Ip(k)(x)1 ~ c(k) nk max Ip(x)1
-l~x~l -l~x~l

(4)

with a constant depending only on k. He observed the relation
S~(1)cPn(-1, 1) as well. For the first derivative J. T. Scheick [7]
extended Erdos' inequality for polynomials from Pn( -1, 1) with the best
possible constant e12. In [3], T. ErdeIyi proved the sharp inequality

max Ip(k)(x)1 ~ c(k) min {n 2
, nr- 1

/
2 }k max Ip(x)1 (5)

-l~x~l -l~x~l

for polynomials of degree at most n having no zeros in the union of
the circles with diameters [-1, - 1+ 2r] and [1 - 2r, 1], respectively
(0 < r < 1). In this paper we examine the magnitude of

max_ 1 <::x<:: 1 Ip'(x)1sup ~ ~

pES maX_ hx <;;1 Ip(x)I'

where S = S;:'(r) (0 ~ m ~ n, 0 < r ~ 1) and establish the exact order up to
a multiplicative constant depending only on m. The theorem we prove is a
common generalization of Markov's inequality (r = 0, m = 0) and Lorentz's
result (r = 1, m = 0).

2. NEW RESULT

THEOREM. For every 0 < r ~ 1 and 0 ~ m ~ n we have

where cl(m) and c2(m) depend only on m.
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3. LEMMAS FOR THE THEOREM
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To prove our theorem we need several lemmas. First we deal with the
upper bound. The crux of the proof is to give the desired upper bound for
Ip'(l)l, from this we will deduce the right hand side inequality easily. Our
first lemma guarantees the existence of an extremal polynomial with some
additional properties. Let

K(r) = {ZEC: Iz-r/21 <r/2}

and denote by S;;'(r) (0 ~ m ~ n, 0 < r ~ 1) the set of those polynomials
from IIn which have all but at most m zeros outside K(r).

LEMMA 1. Let 0 < r ~ 1 and 0 ~ m ~ n. There exists a polynomial
Qn E S;;'(r) with the following properties:

(i) IQ~(l )I/maxo,;;;xo IQn(x)1 = sUPpES;:'(r) (lp'(l )I/maxo,;;;x,;;; IIp(x)I)·

(ii) Qn has all but at most m zeros in the set {ZEC: Iz-r/21 =r/2} u
[r, 1], and the remaining at most m zeros are in (0, r).

To formulate our next lemma we need to introduce a number of nota
tions. According to Lemma 1, Qn is of the form

p y b

Qn(x) = ex'" rI (x-zj)(x-zJ rI (x-xj) TI (x- yJ, (6)
j=l j=l j~l

where

Izj -r/21 =r/2, zj¢:R (1 ~j~f3),

xj E[r,l] (l~j~y),

YjE(O,r) (l~j~b~m),

s:= rx + 2f3 +Y+ b ~ n.

Observe that (7) implies

(7)

(8)

(9)

flO)

from which we deduce

p p
rI (x-zJ(x-zJ= L a2jx2j(r-x)2P-2j
j~l j~O

(11 )
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(0 ~j ~ 13). (12)

From (6) and (11) with c = 1 we obtain

f3
Qn(x) = L: a2jQj(x)

j~O

with

y (;

qj(x) = x,,+2j(r_x)2 f3 -2j n (x-x) n (x- Yj)
j=l j~l

For the sake of brevity let

Yj:= 213 -2j+ y.

Further we introduce

(13)

(O~j~f3). (14)

(15)

r* '= min {r 1 __1_}. 'lOs

where s ~ 1 is defined by (10). Choose a

(0 < r~ 1), (16)

z* E [1- 5(1- r*), 1-4(1- r*)]

such that

1-r*
Iz* - yjl ~ 2(m + 1)

From (17) and (18) we easily deduce

(17)

(18)

1-r* 1-z*
Iz* - Y I>- >----

j r 2(m+1)r lO(m+1)

which gives

* 1 1- Yj
Iz - Yj ~ 10m + 11 (1 ~j~ 15). (19)

Using the notations introduced in (6)-(19) we can establish

LEMMA 2. Let 9/10::;; r::;; 1. If an index 0::;; j::;; 13 satisfies

Yj ~ 20s(1- r*), (20)



then we have
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where c3(m) is a constant depending only on m.

Our following lemma is a slight extension [2, Corollary 3.1] of a deep
theorem of Borwein [1]. We will not prove it in this paper.

LEMMA 3. If P E Iln has at most k (0 ~ k ~ n) zeros in the open circle
with centre and radius 1/2, then

max Ip'(x)1 ~ 18n(k+ 1) max Ip(x)l,
O~x~l O~x~l

and this inequality is sharp up to the constant 18.

This result was conjectured by 1. Szabados [8], and he showed it would
be sharp. P. Borwein [1] proved Lemma 3 under the additional assump
tion that p has only real zeros. In [2, Corollary 1.3] Lemma 3 was shown
without this additional assumption.

Remark. In [4], Lemma 4 was generalized for higher derivatives.
Namely the sharp inequality

max Ip(j)(x)1 ~c(j)(n(k+ I))} max Ip(x)1
O~x~l O~x~l

holds for every polynomial p E Iln which has at most k (0 ~ k ~ n) zeros in
the open circle with centre and radius 1/2. This result does not follow from
Lemma 3 by a simple induction on j.

4. PROOF OF THE LEMMAS

Proof of Lemma 1. Let °< IJ < 1 be fixed. We first consider the corre
sponding extremal problem for the uniform norm on [0, 11],

IQ~.'1(I)1 = sup Ip'(I)I. (21)
maxo,;;;x";'1IQn''1(x)1 pES;:'(r) maxo,,;xqlp(x)1

The subset of polynomials in S;:'(r) whose uniform norm on [0, IJ] is
bounded by 1 is compact and the operator p -+ p'(I) is continuous onthi~

subset. This guarantees the existence ofmaximal Qn.'1 in (21). To prove that
(ii) holds for Qn,'1' first we show that Qn,'1(zd=O, zd':R imply
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IZ1-r/21=r/2. Suppose indirectly that Qn,~(zd=O, zlfj:R, and
IZl -r/21 -I=r/2. Then the polynomial

with a sufficiently small B > °contradicts the maximality of Qn,~. Now we
prove that Qn,~(zd=O, ZlER\(O,r) imply either Zl=O or zlE[r, 1]. By
the just proved part of the lemma, Qn,~ is of the form

P y 0

Qn,~(x)=c f1 (x-z)(x-z) f1 (x-xj) f1 (x-y), (22)
j= 1 jT 1 j= 1

where

Izj -r/21 =r/2;

yjE(O,r);

Zj fj: R (1 :;;;;. j:;;;;' /3);

(1 :;;;;'j:;;;;'(j :;;;;.m);

Xl:;;;;.X 2 :;;;;. .. • :;;;;'xyER\(O,r);

2/3 +Y+ (j :;;;;. n; c -1= 0.

To finish the proof of the lemma we show that Xl < °or x y> 1 contradicts
the maximality of Qn,~. To see this we distinguish three cases.

Case 1. Qn,~ has at least two zeros (counting multiplicities) in
R\ [0, 1]. Denote these (not necessarily different) two zeros by C( 1 and C(2'

Then the polynomial

with a sufficiently small B > °contradicts the maximality of Qn,w

Case 2. x y> 1, Xy_l:;;;;'1. Then we can choose a u ~ 1 such that

To see this we introduce the polynomialfu(x)=«x-u)/(x-Xy))Qn,~(x).

If Xy_l = 1, then U= 1 is suitable. If Xy_l < 1, then

Since {.} is positive, u> 1 can be chosen so that f~ (1 )/fu (1) = °holds.
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Therefore the polynomial

with a sufficiently small c > °contradicts the maximality of Qn,~,
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(O~j~f3). (23)

, Case 3, x I < 0, x 2;?: 0, x y~ L Then similarly to Case 2, we can choose
au;?: 1 such that

(
x-u )'
--Qn,~(x) (1)=0,
X-XI

therefore the polynomial

with sufficiently small c>°contradicts the maximality of Qn,~. I

Proof of Lemma 2. Recalling (14), (8), (9), and (16) we easily get

Iq; (1) I~ [ (C( + 2j)( 1 - r* )YJ + ')Ii (1 - r* FJ - 1

+ (1- r*)YJ itl 1~ yJ bl (1- yJ

Further, using (14), (17), (16), (8), (9), 9/10~r*~I, l-x?;oe- 2x

(0~x~0,7), (19), (20), (10), and b~m, we obtain

6

Iqi(z*)I;?:(1-5(1-r*)t+2i (3(1-r*))YJ n IZ*-Yil
i=1

6

;?:C4(m) 3YJ/2 (l-r*FJ n (1- yJ
i=1

(24)
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Thus (23), (24), (10), fJ~m, and (16) yield

/q;(1)/ :>::: 3- Yj
/
2

( • Yj fJ)
Iqj(z*)1 "" c4(m) a+2}+ 1-r* + 1-r*

~ c(m )(s + lOs + 10sm) c3(m )s,

thus the Lemma is proved. I

5. PROOF OF THE UPPER ESTIMATE OF THE THEOREM

If 0 < r ~ 9/10 the Markov inequality (1) gives the desired result without
exploiting any information on the zeros. Therefore in the sequel we assume
that

fo<r~1. (25)

First we give the desired upper bound for IQ~(1)1 where Qn is the extremal
polynomial defined by Lemma 1. Recalling the representation (10) we split
the sum in (13) as

(26)

where

and

fJ
PI(X) = I a2jqj(x)

j~O

Yj;;' 20s(1 ~ r*)

fJ
P2(X) = I a2jqj(x),

j~O

Yj < 20s(l- r*)

(27)

(28)

By Lemma 3, (27), (26), (12), (16), (17), and (25) we easily deduce

Ip~(1)1 ~ c3(m) slpI(z*)1 ~ C3(m )sIQn(z*}1

~ c3(m)s max IQn(x)l. (29)
O~x~l

Now observe that P2(X) is a polynomial of degree at most n, which has all
but at most [20s(1- r*)] + m zeros at 0 (see (28), (14), (15), (9), and
(10)), so using Lemma 3 and (16), we obtain

Ip;(1)1~18s(20s(1-r*)+m+1) max Ip2(X)1
O~x~l

~c5(m)(s+(1-r)s2) max Ip2(X)I.
O~x~l

(30)



A MARKOV-TYPE INEQUALITY

It is easy to see that (26), (27), (28), and (12) imply

max Ipz(x)1 ~ max IQn(x)l,
O~x~l O~x~l
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hence (30) yields

Ip;(1)1 ~ cs(m)(s + (1- r) SZ) max IQn(x)l. (31)
O:s.:;x~l

From (26), (29), (31), and (10) we conclude

IQ~(1)1 ~ c6(m)(n + (1-r) nZ) max IQn(x)l, (32)
O~x~l

therefore by the maximality of Qn we have

Ip'(1)1 ~ c6(m)(n + (1- r) nZ) max Ip(x)1
O~x~l

(p E S;;'(r)). (33)

From (33), by a linear transformation we easily deduce

Ip'(y)l~c7(m)(n+(1-r)nZ) max Ip(x)1
O~x~l

(pES;;'(r), r<y~1).

(34)

Furthermore, after a linear transformation Lemma 3 yields

Ip'(y)1 ~~n(m+ 1) max Ip(x)1
r O~x~r

<20(m+1)n max Ip(x)!
O~x~r

(p E S;;,(r), 9/10 < r ~ 1, 0 ~ y ~ r). (35)

Now (34) and (35) show that

max Ip'(x) ~ cg(m)(n + (1 - r) nZ) max !p(x)1
O~x~l O~x~l

(p E S;:'(r) c:: S;:'(r)) (36)

and by reason of symmetry· this gives the. upper estimate of the theorem
when9/10<r<1. I

640/63/3-5
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6. REMARK ON THE HIGHER DERIVATIVES

Observing that pEP'::(r) (O~m~n-l, O<r~l) implies PEP,::+l(r),
from the result of Section 5, by induction on m we obtain

COROLLARY 1. We have

max Ipm(x)1 ~ c9(m)(n + (1- r) n2)m max Ip(x)1
-l~x~l -l~x~l

for every p E P~(r).

7. PROOF OF THE LOWER ESTIMATE OF THE THEOREM

AND THE SHARPNESS OF COROLLARY 1

In this section we prove that

maX_1<X<1Ip(m)(x)1 ()( (1 ) 2)m
sup 1 ( )1 ~ CIO m n + - r n. .

pEP~(r) max_1<x<1 P x
(37)

To show this we distinguish two cases.

Case 1. 0 < r < 1- 8m/n. Then we can choose an integer m ~ k ~ n such
that

8(k+l) 8k
1- ~r<I--

n n

and let

1 k

Tk(x)=2k- 1cos(karccosx)= TI (x-v})
}~l

We introduce the polynomial

(
n-2k)n-k

q(x)= x+~ Tk(x).

Observe that

(38)

(39)

(40)

(-I~x~I/2), (41)
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and from (39) we deduce

331

(x< -1). (42)

Since x= 1/2 is the only point in «2k-n)/(2k), 1) where

d (( n-2k)n-k )
dx x+~ (1-X)k

vanishes, recalling (40), (41), and (42), we conclude

(
n - 2k)n-k

Iq(x)1 ::( 2 x +~ (1- X)k

& (! n - 2k)n-k (!)k
"" 2+ 2k 2

::( q( 1) (43 )

Apparently

Iq(x)1 ::( q( 1) (44)

and this together with (43) yields

max Iq(x)1 =q(1).
(2k - n)/(2k)"; yo( 1

Now let

(
n 4k-n)

p(y)=q 4k Y+4k

and

(45)

(46)

4k (k-}) n n-4k
1J=-cos +--

J n k n
(O::(}::( k). (47)

From (45), (46), (39), and (40) we easily deduce that

maxlp(y)1 = p(1)
~l::;;:;y~l

and p has all its zeros at -1 or in (1 - 8kln, 1), hence by (38) we get

P E P~(r).

(48)

(49)
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By (40), (46), (47), (48), cos x?:: 1 - x 2j2, and 8k < n it is easy to see that

(
(k-j)n n_2k)n-k(1)k-l

Ip(ryJI = cos k +~ 2"

(
2k)n-k (1)k-l

?:: cll (m) 1+ n ;k 2" = cll(m) p(1)

=cll (m) max Ip(y)1 (k-m~j~k) (50)
~l~y~l

and

By (47) and cos x?:: 1- x 2j2 we obtain

1_ry.:;:::cd m)
J"" nk

(k-m~j~k-1).

(k-m~j~k).

(51)

(52)

(k-m~j~k)

Let Q(X)=n;=k_m (x-ryj), then (52) implies

IQ'(ryj)1 ~ (Cl~~m)r
and obviously

(53)

(k-m ~j~k-1). (54)

Using (50), (51), (53), and (54), by a well-known relation for the mth
order divided differences, we obtain that there exists a suitable eE [ry k _ m' 1]
such that

IP(m)(~)I=m!1 i ~~ryJI=m! i 1~~ryj)1
j=k-m (ryJ) j=k-m (ry)

?:: c13 (m)(nk)m max Ip(y)1
-1"; y,.; 1

?::c I4(m)(n+(1-r)n 2 )m max Ip(y)l,
-l~y:s;l

which together with (49) proves (37).

Case 2. 1 - 8mjn < r ~ 1. Then (37) holds obviously by taking the poly
nomials (1 + x y. This completes the proof of the theorem. I
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8. REMARK ON THE CASE r > 1
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Here we discuss what happens in the Theorem when r> 1. This turns out
to be much easier than the case 0 < r ~ 1.

PROPOSITION. For 1~ m ~ nand r> 1 we have

(
n)m max Ip(m)(x)1 (n)mc1S(m) - ~ sup ~l<:;xd I ~c16(m) - ,
r pES~(r) max~l<:;x<:;l Ip(x), r

where clS(m) and c16(m) depend only on m.

Proof of the Proposition. The left hand side inequality can be obtained
by taking the polynomials (x + rt. When 1 < r~ 2 the right hand side
inequality follows from Lorentz's Theorem (see Theorem B in[3]) and the
observation that a polynomial p E S~( 1) has the representation

n

p(x)= I aj(1-x)j (1 +xt- j

j=l

with all aj ~ 0 or all aj ~ O.

Now let r > 2. Observe that p E S~(r) can be written as

where

n

p(x) = I ajqn,j
j=l

with all aj ~ 0 or all aj ~ 0, (55)

(56)

By Rolle's Theorem q~~) (1 ~ m ~ n) has all its zeros in [- r, r], so a
simple calculation shows

Iq~m)(x)! n! (r+1)m (n)m
, ~ ~cdm) -

Iqn,;(x)! (n-m)!(r-1)m r

(Ixl ~ 1, 1~m~n, r>2). (57)

Thus (55), (56), and (57) yield

!p(m)(x)1 Ip(m)(x)1 (n)m
----:.:..---'----'---- ~ ~ C17(m ) -
max_ 1<:;x<:; 1 Ip(x)1 Ip(x)1 r

which gives the Proposition. I

(lxl~l, 1~m~n,r>2)
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9. FURTHER PROBLEMS

Our theorem does not show any improvement to the Markov inequality
if r > 0 is small, e.g., 0 < r < 1/2. P. Erdos raised the following

Conjecture. For all 0 < r < 1 there exists a constant c(r) < 1 depending
only on r such that

max Ip'(x)l~c(r)n2 max Ip(x)1 (pES~(r),n~no(r)).
-l~x~l -l~x~l

At present this is an open problem.

Problem. Let S be the collection of those polynomials of degree at most
n, which have no zeros in the region bounded by the lines y = ±x ±1. The
order of

maX_1"'X"'1Ip'(x)1 (58)sup ~ ~

pES max_1";;x";;1 Ip(x)1

is obviously between O(n) and n2
• What is the exact order of (58)? The

author was not able to prove even that the order of (58) is o(n 2
) but

conjectures that it is O(n).
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